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Abstract--A model of core-annular flow in which the oil core is a perfect cylinder with generators parallel 
to the pipe wall, but off-center, is studied in laminar and turbulent flow to assess the effects of eccentricity 
and the volume flow rate ratio on the friction factor and holdup ratio. The study is tilted toward water 
lubrication of heavy crude viscous oil. For the turbulence analysis, the water is assumed to be turbulent 
and the core laminar. A standard k-e model with a low Reynolds number capability is adopted for the 
turbulence case. The agreement between model predictions, which have no adjustable parameters, and 
experimental and field data from all sources, is satisfactory. 
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1. INTRODUCTION 

One method for transporting crude oil with substantial savings in power is by lubricating it with 
water. The water forms an annulus around a core of oil, reducing the shear stress on the wall of 
the pipe. Many studies of this topic, including a book (Joseph & Renardy 1993), have been 
published in recent years. For industrial design an applicable-Reynolds number-friction factor 
correlation is indispensable. Inspired by the Moody Chart for single-fluid pipeline systems, 
researchers have been trying to find a correlation between the Reynolds number and the friction 
factor for oil-in-water systems. Part I of this paper (Arney et al. 1993) presents one such study. 
Certain definitions of the friction factor and holdup ratio were shown to correlate the data from 
all lubricated pipelines with good agreements centered on rather large scatter. The scatter could 
be attributed to the eccentric position of heavier- or lighter-than-water oil cores, the effects of 
different holdup ratios, the increase in friction due to surface undulation and irregularities and to 
the fouling of pipe walls. In this part, we treat the same problem theoretically using the simplest 
models we could devise to assess the effects of eccentricity and turbulence without introducing 
fitting parameters. The model we use in both laminar and turbulent flow is perfect, off-center, core 
flow. The generators of the core and annulus are rigorously parallel and the cross section of the 
pipe and core is circular, but the centers do not coincide. This kind of model, for the laminar case, 
was introduced and studied by Bentwich (1964). He solved the Poisson equation [14] that governs 
in the eccentric core flow model with a Fourier series in bipolar coordinates. However, he did not 
use his solution to evaluate the friction factor or holdup. 

Ooms et al. (1984) and Oliemans (1986) tried to use lubrication theory to analyze the case of 
a very viscous, wavy eccentric core and an annulus of water in laminar flow. By balancing the 
buoyancy with lubrication forces, they predicted the eccentricity of the core, and through numerical 
methods directly predicted the pressure drop. Their method works well for many, but not all, 
features of laminar flow when correct choices of the wave form and amplitude are assumed. 
Oliemans et al. (1987) also tried to extend their results to the turbulent case but again the theory 
requires the input of wave forms and wavelengths, which are harder to identify in the turbulent 
case. They used a mixing-length turbulent model with the Van Driest expression for the mixing 
length. Their turbulence model underpredicts the variation of the pressure gradient with oil 
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velocity, even when the actual wave amplitudes and wavelengths observed during their tests are 
used as input data. They speculated that their neglect of  the Reynolds stress was the cause of  the 
discrepancy. 

In our analysis, we do not use fitting parameters such as the interfacial wave forms and we 
achieve good agreements, but we do not address the question of levitation of  the core against 
gravity. 

2. L A M I N A R  E C C E N T R I C  CORE FLOW 

Consider a horizontal pipeline, within which two immiscible liquids flow in the axial direction. 
We refer to water as liquid 1 and oil as liquid 2, and assume that both liquids are Newtonian with 
different densities and viscosities. The constant diameter of  the pipeline accomodates a uni- 
directional flow in the axial direction (x). A laminar core flow is a one-component velocity field 
w ( y ,  z) depending on the transverse coordinates y and z, satisfying the Navier-Stokes equations 
in reduced form: 

@ 
- -  P g  - -  ~zz = 0 [1] 

and 

@ 
V2w ~ = 0, [2] 

where z increases against gravity. In [2], @/t~x is the pressure gradient along x, which is a constant, 
f. On the pipe wall, the velocity must be zero, 

w I~ = o. [3] 

We assume that the two liquids form only one interface ~, i.e. cases for which there are more than 
one core of  oil are excluded; S can be described as ~(z, y)  = 0. Across ,~ the velocity and the shear 
stress are continuous: 

~w~{z = 0 [4] 

and 

c~w] = 0 ,  [5] 
# ~ n  z 

where [.~ = (), - ( )2 denotes the jump. The normal force balance on the interface involves 

- ~p~  + 2 H ~  = 0 ,  [6] 

where tz is the constant interfacial tension and 2H, the mean curvature, is expressible as a 
differential form involving the function 6 ( x , y ) .  

We can find the pressure from [1] and [2]: 

p ,=  - p;gz - fx  + C; ( i = 1 , 2 ) ,  [7] 

where C; are constants, one for each fluid. The pressure is determined up to an arbitrary constant 
which we choose to make [[C]] = 0. Then [6] and [7] imply that 

[[p]]g • x + 2Ha = 0; [8] 

integrating [8] over the circumference of the core, we have 

 '$f0B g x + 2a f0B H = O ,  [9] 

where aB is the interface. Hesla et al. (1993) have shown that the term involving surface tension 
vanishes, hence 

[, f0 g x=0, 
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which is obviously false unless [[p]] = 0. The mathematical contradiction we have just exposed is 
just a statement that if the density is not matched, the ideal core cannot be levitated against gravity. 

The flow rates and the friction factor in a lubricated pipeline are of major concern in applications. 
The volume rate is defined as 

= ~ w, dfi, [10] Q, 
An i 

where f~; is the area occupied by fluid i. From Ql and Q2 a volume average velocity is defined: 

V =  Ql +Q2 
nR 2 , [11] 

where R is the radius of the pipe. The friction factor is a measure of the shear stress on the wall, 
it is defined (Arney et al. 1993) as: 

8Zw 
,~, p V 2 ,  [12] 

Zw is the shear stress, which is related to the constant pressure gradient f along the axial direction by 

Rf  
2 

Then, 

Using [11], we get 

, ~ . = - -  

with Re as a Reynolds number and 

4Rf 
2 =  pV 2" 

I~l 8nR af fl 

2RpV#1(QI + Q2) Re 

8nR4f 
fl = [13] 

#1 (QI + 02)" 

In experiments and industrial applications the holdup fraction Hw and the input fraction Cw of 
water are the two most used parameters. They are defined (Arney et al. 1993) as: 

H w = - -  
~//'l + ~f'2 

and 

Ol 
Cw QI + Q2 

where ~/l is the volume of water and ~2 is the volume of oil. In our case, because the flow field 
is two-dimensional, ~1 and ~e" 2 are just the areas occupied by the fluids on the cross section and 
Cw can be regarded as the flux ratio of water. 

Introducing dimensional scales for length and velocity, respectively, as R and fR2/#l, we make 
the equations dimensionless: "x 

V2wl=l,  i n~ l  / 

VEw2 = m, in t~2 I [14] 

w;=0, o n F \ Z  

and 

Wm ~w~=~_ d n j = O '  o n F / Z ,  

where m( < 1) is the viscosity ratio #1/#2 and w is the dimensionless velocity. 
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Figure 1. Eccentric core flow. All 
lengths are dimensionless in units of r, 
the radius of the pipe. The coordinate 
z is against gravity. The core and pipe 
have circular cross sections with paral- 
lel axes along x (not shown) through 
centers which are a distance e apart. 
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Figure 2. The product 2~R of the friction factor and Reynolds 
number vs t/for m = 1/90,000 and different eccentricities e, in the 
laminar case. The friction factor is greater for larger eccentricity. 

When  [[p~ = 0, gravity does not  enter into the dynamics  and the cross section o f  the core reduces 
to a circle. However,  the radius r 2 and the posit ion o f  the core, which can be represented by the 
eccentricity e as shown in figure 1, must  be prescribed so that  the interface can be specified 
completely. 

F rom [12] it can be easily seen that  fl is only a function o f  e, m and t/( = r2), the radius ratio, 
after we introduce the dimensionless quantities into the formulas. So 

2 = fl(e,  m,  tl) 

Re 

e = 0 is the concentric case, which has been the subject o f  many  theoretical studies (Joseph & 
Renardy 1993) and the results o f  the studies have been widely compared  with experiments. In this 
case, the system can be solved explicitly. In dimensionless form, we have 

w l = ( 1 - r  2) and w 2 = r n ( t / 2 - r  2 ) - t / 2 + 1 ,  

where r is the radius o f  cylindrical coordinates.  The flow rates QI and Q2 are then obtained easily 
and 

64 
fl(0, m, r/) = 

1 + r/ ' (m --  1)" 

I f  we redefine the Reynolds number  as [see Arney  et al. (1993) for a discussion o f  91]: 

91=  # '  [ l + r / 4 ( m - 1 ) l = R e [ l + t l 4 ( m - l ) ] ,  [15] 
2 R p  V 

we have 

64 

91 

In general case e :f: 0, the problem is solved numerically by a finite element method.  The product  
o f  the friction factor  and Reynolds number,  2 91, in these eccentric cases is shown in figure 2, where 
291 is plotted as a function o f  e and t / f o r  a fixed viscosity ratio m = 1/90,000, which is c o m m o n  
for heavy crude oil and water. It  is clear f rom the results that  2 91 > 64 when e ¢: 0; physically, this 
means that  the friction on the wall is larger under  the same Reynolds number  when the core is 
off-center, a l though the friction is not  greatly different than when e = 0. For  a fixed e, the friction 
increases with increasing core radius. 

Using the same parameters,  the results o f  holdup fraction H,, vs the volume flow rate o f  water 
C,, are plotted in figure 3. The results when the core is off-center do not  differ much from the 
concentric case (Arney et  aL 1993) even for e = 0.5. 
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Figure 3. The water holdup H W vs the volume flow rate Cw for the same parameters as in figure 2 and 
different values o f  the eccentricity e. The holdup is not  a sensitive function of  the eccentricity in laminar 

flow (or turbulent flow, see figure 12), 

3. T U R B U L E N T  E C C E N T R I C  CORE FLOW 

Because the viscosity of the oil is large, we may assume that the flow is laminar in the oil core, 
while turbulent in the water annulus. Overall the flow is fully developed with one non-zero 
component of  the mean velocity. To compute the turbulent flow in the water we used the k-e model. 

In order to cover the range of  Reynolds numbers encountered in practice, a so-called low 
Reynolds number k-e model was chosen. This model is not restricted to high Reynolds numbers 
for which certain wall functions are required, but rather extends the range of  validity of the model 
to lower Reynolds numbers (Launder & Spalding 1974). 

3.1. The k-e equations 

Let k and e be the turbulent energy and the dissipation rate of  this energy, respectively. Launder 
& Spalding (1974) proposed a set of equations for k and e, for our steady two-dimensional case 
they are the following: 

vk +v 00 jj-o :° 
and 

( °wy1 F(O wy (lo wy 
L\a, # 7- Lt, ar ) + ao ) j + 2o#,  Lk-D-/) + 7 a-o~) 

/'1 t~2w \2-] e2 
=0, .71 

where w is the axial direction component of  the mean velocity, satisfying 

Op 
div[(ju t + #)Vw] - ~xx = 0 [18] 

where #t is the eddy viscosity, modeled as 

k 2 
/.it = C .  T "  [191 

In the above equations, C~, ak and G are constants, whose values were determined by fitting 
computations to experiments. The commonly accepted values of  these constants are 

C1=1.44,  a k = l . 0  and G = l - 3 .  

C~ and C2~ vary with the turbulent Reynolds number, 

k 2 
Rt = - - ,  [20] 

V8 
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according to the formulas 

and 

2.5 ) 
C# = C,~ exp -K  

l+~ 

C2~ = C2o~ [1.0 - 0.3 exp( - R,~)], 

where C:oo = 1.92 and C ~  = 0.09 are the constants used for fully developed turbulence. 
Launder & Spalding (1974) introduced the extra term 

F{3k~i2\ 2 cgk~12y] 

-2"Lt ) i 
in the k equation in order to implement a zero boundary condition for e. Although e goes to a 
constant on the wall, this treatment of the boundary condition seemed to work better than using 
the zero-gradient boundary condition for e. Our work confirmed this. 

Other boundary conditions include the zero conditions for k and w on the pipe wall. In the 
interior of the oil core we simply require that k, e and the eddy viscosity #t be zero because of the 
laminar flow assumption. This also ensures the continuity of the mean velocity and mean shear 
stress across the interface between the oil core and the water annulus. 

We use a Patankar-Spalding code to solve the k-e  problem. This control-volume code is quite 
general and works well for convection-diffusion type equation in two-dimensional domains, 
including k-e  model equations (Jones & Launder 1972; Launder & Spalding 1974). 

3.2. Validity o f  the numerical simulation 

The eccentricity of the core is produced by the dynamics of levitation neglected here. The position 
of the core in our model has to be given as an input. The concentric case is the simplest because 
it leads to ordinary differential equations depending on the radius r alone. 

Turbulence models should be validated by comparing measured and predicted values of the 
velocity profile. The only measured velocity profile known to us was by Sinclair (1970). Since his 
results were not for perfect core-annular flow, we are not able to make a direct comparison. 
Nevertheless, comparisons of  this type for single-fluid flow in a pipe (Launder & Spalding 1974) 
have shown good agreements. In the development of  the so-called Reynolds number model, special 
attention was given to matching the velocity profile close to the wall, the so-called logarithmic 
region, since that is where the model differs from the regular k-e  model. Although our case is 
different, we expect that the velocity profile close to the wall and the interface should resemble those 
of  a single-fluid flow in a pipe. In figure 4 the velocity profile close to the wall is plotted in wall 
units, i.e. 

where 

y+ _u~(R -r)  

is the friction velocity, ~w is the shear stress on the wall and u + = w/us. Figure 5 shows a similar 
plot near the interface. These figures show that our computed profiles are similar to the profiles 
given in the literature (Launder & Spalding, figure 3.3) for turbulent shear flows. Figure 6 shows 
graphs of  the turbulent kinetic energy k and the turbulent energy dissipation rate e in wall units 

k ve 
k + -  u-~ and e + " 

4 '  U~ 

k and e have shapes that are typical of  a turbulent shear flow of a single fluid (Patel 
et al. 1984, see figure 1). This comparison serves as another justification for our numerical 
computation. 
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Figure 4. Computed turbulent mean velocity profile near the wall: 9~ = 21,000, m = 1/2000, r/= 0.8 and 
e = 0.0. 

3.3. Turbulent exponent for the friction factor 
Figures 7 and 8 are the computed velocity profiles for concentric core flow with a viscosity ratio 

of  1/2000 when the radius of  the core is 80% of  that of  the pipe. The velocity in figure 7 is expressed 
in units of  fR2/l~w and has been plotted for different Reynolds numbers. 

The oil core moves like a rigid body because it is so viscous. However, the forward speed of  the 
core is to be determined by the retarding shear in the water. We may collapse the profiles in figure 7 
by rescaling the velocity with 91 -°-79. The result is shown in figure 8. It is clear that the newly-scaled 
velocity profiles for different Reynolds number do not differ much. We shall see later that the 
holdup ratio does not depend strongly upon the Reynolds number because the velocity profiles are 
more or less self similar. However, in general, it is not always possible to get such a good collapse 
with a single factor of  91. Finally, we note that a Blausius formula for turbulence states that the 
velocity profile scales as 91-075; the power index from our computat ion depends on the radius ratio 
r /and is around 0.79. This suggests that other classical properties of  turbulence in pipe flow might 
also find an appreciation in the study of turbulent two-phase core flow. For example, roughness 
correlations could be used to describe the rise of  the friction factor observed in fouled lines. 
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Figure 5. Computed turbulent mean velocity profile near the interface for the same parameters as in figure 
4; w0 is the forward speed of the interface. 
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Figure 6. Turbulent kinetic energy and the dissipation rate 
of this energy in universal turbulent coordinates; 

9~ = 21,000, m = 1/2000, r / =  0.8 and e = 0.0 
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Figure 7. Turbulent mean velocity profiles for different 
Reynolds numbers; m = 1/2000, ~/= 0.8 and e = 0.0 

When the velocity profile is known, the friction factor 2 can be readily computed. For a given 
pressure gradient, a velocity profile is computed. Then we calculate the average velocity V. Using 
V, we compute a Reynolds number [15] and 2. This procedure gives a point in the friction 
factor-Reynolds number plane. Figure 9 gives such a plot for concentric flow, where the different 
symbols represent data from different sources [see Arney et al. (1993) for more details]. The friction 
factor for laminar flow is also displayed in figure 9 as the straight line 2 = 64/9t. In general, our 
computational results agree well with the experimental data given by Arney et al. (1993). Larger 
values of the radius ratio r/lead to lower values of 2. This is because the oil moves as a rigid body 
with a velocity higher than that of the water so that the average velocity increases with r/, which 
in turn gives a lower value of 4. This is also one of the reasons that data from the experiments 
scatters. 

3.4. Effect of  the viscosity ratio 

We have assumed that the flow in the interior of the oil core is laminar. This is based upon the 
assumption that the viscosity of the oil is much larger than that of the water. In the concentric 
case we calculated the friction factor for different values of the viscosity ratio m with the results 
shown in figure 10. A hugh increase in m leads to only a slightly smaller friction factor. As long 
as the viscosity ratio is small enough, say < 1/1000, any decrease in m will have virtually no effect 
on the friction factor. 
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Figure 8. The same velocity profiles as in figure 7 but rvscaled by 9~ -°79, i.e. w* = wgl °,79. The turbulence 
exponent 0.79 for core flow can be compared with the Blausuis exponent of  0.75 for pipe flow of a single 

fluid. 
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Figure 9. Friction factor vs Reynolds number in the concen- 
tric case (e = 0.0) for m = 1/2000 and r / =  0.7, 0.8 and 0.9. 
The smallest A, the line at the bottom, corresponds to the 
largest ~/; i.e. the smallest water fraction. More water 
increases the friction factor slightly. The data is from Arney 

et al. (1993). 
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Figure 10. Friction factor vs viscosity ratio for 
different Reynolds numbers when r /=0 .8 .  The friction 
factor is insensitive to the viscosity ratio for sufficiently 

small m. 

3.5. Effect o f  eccentricity 

It is evident that a perfect concentric flow is a very rare event, possible only in the smallest 
window of parameters. Even when the flow is laminar, the instability from the interracial friction 
produces waves on the core (Joseph & Renardy 1993). Moreover, since the densities of the two 
fluids are almost always different, gravity will push the core off-center. Experimental results suggest 
that under normal conditions an eccentric core-annular flow, rather than a stratified flow, is 
achieved. In this case the eccentric core cannot be a perfect cylinder. A wavy interface is needed 
to levitate the core. Apart from proposals (Ooms et al. 1984; Oliemans 1986; Oliemans et al. 1987) 
based on lubrication theory, an explanation of the mechanism has yet to be established. We know 
that there must be a secondary flow in the pipe and the eccentricity must be related to the density 
difference, however there are no experimental results to guide us on this matter. For our 
computation, we simply input the eccentricity, assuming that we have a perfect eccentric 
core-annular flow, and compute the friction factor. Results of these computations are shown in 
figure 11; the viscosity ratio is 1/2000, r /= 0.7, three different values of e( = 0.0, 0.10, 0.15) are 
plotted and, as a comparison, the corresponding laminar case is also displayed as straight lines to 
the left. In general, an eccentric flow gives a higher value of the friction factor, although the 
difference is not large except at a very high Reynolds number. 

We also computed holdups under the conditions specified in figure 11, with the results shown 
in figure 12. This shows that the k-e model gives rise to holdup ratios, which like the experiments 
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Figure 11. Friction factor vs Reynolds number for r / =  0.7, 
m = 1/2000 and different eccentricities, e ffi 0.00, 0.10 and 
0.15. The larger the eccentricity, the larger the friction 

factor. 
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Figure 12. The water holdup Hw vs the volume flow rate Cw 
for turbulent flow; m = 1/2000 and ~ = 21,000. The exper- 

imental data is from Arney et al. (1993). 
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reviewed in part I (Arney et al. 1993), do not depend strongly on the Reynolds number. For 
Reynolds number from 5000 to 250,000, the variation in Cw for a fixed value of Hw is < 5%. As 
we mentioned earlier, this independence is associated with the fact that the shapes of the velocity 
profile are nearly independent of 9t. We note that, in general, the computational results give lower 
values of Cw than are found in experiments. This is because we have not taken into account the 
roughness of the surface of the core, which will certainly allow more oil to flow through, giving 
a lower flux ratio of the water. An eccentric core results in a higher value of C~ and brings the 
computed curve into better agreement with the experimental data. 

4. C O N C L U S I O N S  

A model of core-annular flow in which the oil core is a perfect cylinder with generators parallel 
to the pipe wall, but off-center, was studied in laminar and turbulent flow to assess the effects of 
eccentricity and the volume flow rate on the friction factor and water holdup. In our model the 
oil is not allowed to touch the pipe wall. If the density of  the oil and water are different, a perfect 
core cannot be levitated against gravity. A lift mechanism which decides where the levitated core 
is located must be associated with surface irregularities, but is neglected here. In the model, the 
eccentricity is prescribed. The problem of perfect eccentric laminar core flow was solved by a finite 
element method. The friction factor for laminar flow with different eccentricities is slightly above 
the line 64/91 for concentric flow. The greater the eccentricity, the greater the discrepancy. This 
kind of  behavior is in good agreement with the experiments (figure 9) which show data clustered 
around the pencil of  lines near 64/91. Some of  the data in the laminar region lie further above this 
pencil of  lines. The cause of this discrepancy is not known but may presumably be associated with 
the fact that many laminar flows are for other than perfect eccentric core flow; e.g. slugs, 
bubbles and large amplitude waves are observed. The water holdup is rather insensitive to changes 
in eccentricity (figures 3 and 12). 

For  the turbulence analysis, the water is assumed to be turbulent and the core laminar. The same 
geometric model and a standard k - e  model with a low Reynolds number capability (Launder & 
Spalding 1974) is adopted for the turbulence model. The model was solved with the control volume 
code SIMPLER. 

The agreement between the computed friction factors that form the pencil of curved lines 
for large 91 and the experimental data is excellent (figure 9). The power index for our computation 
is around 0.79, rather than the Blausius value of 0.75, and this value varies slightly with the 
ratio r/. The computed results and the data do not change much with the viscosity ratio for 
small ratios (figure 10). Friction factors are increasingly higher with a higher water fraction 
for concentric flow; or with higher eccentrictiy for the eccentric case. A property that appears 
to be shared by the data (figure 9) at lower 91 is that the friction factor decreases through 
a local mimimum, rises to a local maximum and then decreases monotonically (figure 11). 
At high Reynolds number, figure 9 shows some data that fall rather far above the 
computed correlation. Arney et al. (1993) attributed this discrepancy to oil fouling the pipe 
walls, it is possible that the degree of fouling could be described by the roughness correlation 
as in the empirical theory of  turbulent pipe flow of one fluid [for instance, see Schlichting (1960, 
figure 20.18)]. 

The water holdup is almost a unique function of the flow rate ratio with little deviation for 
different eccentricities near to zero (figure 12). The data shares this property. 

It is of considerable interest that we get good agreements without fitting parameters or looking 
very closely at waves or irregularities of the core. 

As a final remark, we note that the k - e  model we used and other k - e  models do not give rise 
to unique solutions, in addition to the computed one, k = e = ~t t = 0 everywhere is also a solution, 
and other unphysical solutions in which k and e change sign may also exist. 
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